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Symmetrization of the Sinc-Galerkin Method 
for Boundary Value Problems 

By John Lund* 

Abstract. The Sinc-Galerkin method developed in [5], when applied to the second-order 
selfadjoint boundary value problem, gives rise to a nonsymmetric coefficient matrix. The 
technique in [5] is based on weighting the Galerkin inner products in such a way that the 
method will handle boundary value problems with regular singular points. In particular, the 
method does an accurate job of handling problems with singular solutions (the first or a 
higher derivative of the solution is unbounded at one or both of the boundary points). Using 
n function evaluations, the method of [5] converges at the rate exp(-KVr), where ic is 
independent of n. In this paper it is shown that, by changing the weight function used in the 
Galerkin inner products, the coefficient matrix can be made symmetric. This symmetric 
method is applicable to a slightly more restrictive set of boundary value problems than the 
method of [5]. The present method, however, still handles a wide class of singular problems 
and also has the same exp(-KVC) convergence rate. 

1. Introduction. The general Galerkin scheme applied to the boundary value 
problem 

Lf(x) = f "(x) + it(X)f '(x) + v(x)f(x) = a(x), a < x < b, 

(1.1) f(a) =f(b) = 0 

has the discrete form 

(1.2) (Lfm - Sk) = , -M < k < N, 

where the assumed approximate solution of (1.1) is given by 

N 

(1.3) fm (x) = E fp Sp(x). 
p=-M 

The properties of the approximate fm are dependent on both the inner product in 
(1.2) as well as the choice of the basis functions Sk in (1.3). If, for example, the inner 
product in (1.2) is the L2(a, b) inner product and the Sk in (1.3) are B-splines, then 
the above is called the finite element method. If the inner product in (1.2) is a 
weighted inner product and the Sk in (1.3) are sinc functions composed with 
conformal maps, then the method defined in (1.2) has been termed by F. Stenger the 
Sinc-Galerkin method. This latter method was developed and (for a specific weight 
function) thoroughly analyzed in [5]. In that work, the weight function was selected 
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so that the method would handle boundary value problems (1.1) with regular 

singular points. In particular, the method works well on (1.1) when the solution 
f has singularities at a and/or b (a higher derivative of f is unbounded at a 
and/or b). 

In the selfadjoint case of (1.1): 

(1.4) f "(x) + v(x)f(x) = a(x), a < x < b, 

f (a) =f(b) = 0, 

the Sinc-Galerkin coefficient matrix generated by (1.2) is nonsymmetric. This is in 
contrast to the classical approximation techniques such as finite differences and 
finite elements as they apply to (1.4). However, as these latter methods are usually 
based on polynomial approximation, the accuracy of the approximation typically 
deteriorates in a neighborhood of a singularity of the solution. To compensate for 
this deterioration, grading the mesh near the singularity (as opposed to a uniform 
mesh) has been recommended (e.g., [1], [4] or [7]). This mesh grading leads to larger 
discrete systems in order to maintain the expected asymptotic rate of convergence of 
the method. This asymptotic rate of convergence depends on the existence and 
boundedness of higher derivatives of the solution, and as a consequence, standard 
error methods must be reevaluated when considering singular problems. 

Whereas the Sinc-Galerkin method effectively resolves the aforementioned diffi- 
culties, it appears to be at the expense of losing the symmetry of the discrete 
problem. The discrete Galerkin system is very much dependent on the choice of the 
weight function for the inner product (1.2). The present paper shows in the case of 
(1.4) that by changing the weight function from what was used in [5], the symmetry 
of the discrete system is preserved. 

In Section 2 the sinc function as well as the class of functions where sinc-function 
approximation works well is defined. The sinc-quadrature rule, which plays such a 
fundamental role in the approximation of the inner products for the Sinc-Galerkin 
method, is briefly summarized. The remainder of the section develops the Sinc- 
Galerkin method with an arbitrary weight function for the boundary value problem 
(1.1). This development follows the method in [5] and has been included here for two 
reasons. Foremost, it seems that the method of [5] leads to the most direct 
development of the symmetrized Sinc-Galerkin method. Secondly, the method of [5] 
has been subjected to relatively little numerical testing. Further numerical testing is a 
natural by-product of the comparison between the method of [5] and the symme- 
trized Sinc-Galerkin method developed in Section 2. 

An error analysis (based on the error formulas of Section 2) is not applicable to 
the symmetrized Sinc-Galerkin method. However, by changing the dependent varia- 
ble in the differential equation (1.4), it is shown that the error formulas of Section 2 
can be applied to the transformed differential equation. This leads to error formulas 
for the symmetrized Sinc-Galerkin method. The price one pays for this symmetriza- 
tion comes in the form of a stronger assumption on the behavior of the true solution 
f of (1.4) than is required for the weight function used in [5]. The apparent 
discrepancy between the error formula for the symmetrized Sinc-Galerkin approxi- 
mate and the nonsymmetric Sinc-Galerkin approximate is also analyzed in Section 2. 
It is shown that for the appropriate selection of the mesh size, the error for the 
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symmetrized Sinc-Galerkin method and the error for the method in [5] are asymptot- 
ically equal. The analysis of Section 2 also gives a second choice for the mesh size 
when using the symmetrized Sinc-Galerkin method. The somewhat surprising 
numerical results when using this second mesh size are included in the examples of 
Section 3. 

2. Sinc-Galerkin Inner Products. On the whole real line the sinc function is defined 
by 

(2.1) sinc(x) = sn,,x). 
'TX 

If f is defined on the real line, then for h > 0 the series 

(2.2) C(f, h,x)= E f(kh)sinc( hh) 
k= -oo 

is called the Whittaker cardinal expansion of f whenever this series converges. The 
properties of (2.2), when a finite number of terms is used, has been extensively 
studied. A comprehensive survey of these approximation properties is found in [6]. 

For approximations over an arbitrary interval the following definition is needed. 
Definition 2.1. Let D be a simply connected domain in the complex (z = x + iy)- 

plane with boundary points a # b. Let 4 be a conformal map of D onto the strip 
Sd = {w: w = u + iv, lvI < d, d > 0) such that 4(a) = -oo and 4(b) = oo. If the 
inverse map of 4 is denoted by 4, define 

r = {+2(u): -0 < U < 0O} 

and 

(2.3) zk= (kh), k=0, +1, +2,. 

iy iv 

w =(z) 

Let B(D) denote the family of functions F which are analytic in D and satisfy 

(2.4) | |F(z) dz ,0 U -- +00o 
4(u+ L) 

whereL = {iv: lvl <d} and 

(2.5) N(F)= IF(z) dzI' < - 
aD 

The importance of the class B(D) with regard to numerical integration is 
summarized in the following theorem [6]. 
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THEOREM 2.2. If F E B(D) then 

00F(zp) _ F(z)K((P, h)(z) d 
(2.6) JF(z) dz-h E ,,(Z P) sin (m ( zIh d 

where 

(2.7) K(cp, h)(z) = exp h sgn(Im (z;jj 

It is (2.6) that provides an accurate approximation of the inner products in the 
Sinc-Galerkin method. 

In this direction, rewrite the orthogonalization of the error for the problem (1.1) in 
the form 

(2.8) ?=r0 (Lf - a)Sk o (z)w(z)dz 

=(f f", Sk ?)(f) + ASk o4 ) + (vf, Sk o ) -(,Sk o ), 

where Sk o 4(z) = sinc((p(z) - kh )/h) and the weight function w for the inner 
product 

(2.9) (f, g) = f (z)g(z)w(z) dz 

will be specified in what follows. Instead of a direct application of (2.6) to the terms 
on the right-hand side of (2.8), integration by parts is applied to the inner products 
to remove the derivatives from f. For example, after two integration by parts 

(2.10) (f", Sk? o ) = BT2 + [f,(Sk0 w)"], 
where the boundary term is 

(2.11) BT2= f 'Sk ? OW| a-f(Sk ? 00'W + Sk 4W ) I a 

and [-, *] on the right-hand side of (2.10) is the standard L2(Tr)-inner product 
(weight function w(x) 1 in (2.9)). After one integrations by parts, the second term 
on the right-hand side of (2.8) takes the form 

(2.12) ( S, Sk? ) = BT, + [ f, (Sk w) ]Wl 

where 

(2.13) BT1 Wf,Sko4W|ba 

It is to the inner products on the right-hand sides of (2.10) and (2.12) that the 
quadrature rule (2.6) is applied. For convenience in recording these approximations, 
the notations 

(2.14) h2 d 2 Sk (Z) = - k)2, p , 

(2.15) 
d 1 

09 p = k 
(2.15) h do Sk ?4(Z) 

Z=Z 
kp ( 1)Pk( p - k), p = k, 

p 

and 

(2.16) Sk P(Zp) kp ( 0 p k 
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will be useful. Application of (2.6) to (2.10) yields the identity 

it ~00 fp 

(2.17) ( f "Sk o ) h Y, ,S,1 (Sk 0 
OW)p + B T2 + EF 

P=-ooP 

where g) - g(J)(zp) (j= 0, 1, 2) denotes the jth derivative of a function g 
evaluated at the point zp in (2.3). The boundary term BT2 is given by (2.11) and E2 

is the error integral on the right-hand side of (2.6) with F replaced by 
f (z)(Sk o 4w)"(z). Expanding the derivatives under the sum in (2.17) yields 

(f i", SkO) = BT2 + EF 

(2.18) ?h 2 h + 2wp)+ - 

In a similar fashion, (2.12) may be written in the form 

(21 19) (f,S )=Br + EF- h P f[ jkplW) P + so? 
04W 

] 
P =-oo - 

where BT1 is defined by (2.13) and Ek is the error integral in (2.6) with F replaced 
by f (z)(ASk o w)'(z). To bound the error integrals in (2.18) and (2.19), the 
inequalities 

(2.20) 2 sin( (z )/h) C(h d) 

1 d (Sk o 0 (z))/d |d + h (tanh( gd/h)) 
(2.21) 1 

sin(_ 
_ 

(z)_h) 
_< c(h9 d) 

2d+d2tanh(,gd/h)) 

and 

(2.22) 1 2(Skio(z))/hd2 < C2( h, d )_C(h d + 2T 2 sin(vo(z)/h) zeaDd 

will be helpful. 
If the weight function w(x) in (2.18) is selected so that BT2 = 0 and f (Sk ? OW)" 

E B(D), then the computation 

|(f 9 Sk ? 1) h fv (k? wp |=|FI 

< e fd/j If(z) I{{S,k"'(z)(4(z)) w(z) + Sk O(Z)W"(z) 

(2.23) + Sk ? (z)( "(z)w(z) + 20'(z)w'(z))}/2 sin(,g0(z)1h)j I | dzi 

< [C2(h, D)N((4/)2wf) + C1(h, D)N((4"w + 241w')f) 

+ Co(h, D)N(w"f )]e-d/h 
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follows from the identity 

(2.24) |K((p, h)(z) |IzD=e- fd/h 

and the estimates (2.5), (2.20)-(2.22). Similarly, if BT1 = 0 in (2.12), then 

-81 ~~~~p (tlf, Sk 0 () +hE f (ZP) h kP() +kp o' 

(2.25) 
=o 

< e-idlC [C(h, D)N(iwp'f) + Co(h, D)N((w)'f60e-dh 

--Cle-,dh 

The two remaining inner products on the right-hand side of (2.8) require no 
integration by parts. An application of (2.6) to these inner products using (2.16) 
yields 

(2.26) |(G Sk 
o h e ` ed/ hCo(h, D)N(Gw), 

where G is either vf or a. 
For the truncation of the sum in (2.25) ((2.23) is similar), assume that 

(2.27) If (z)i (z)w(z) I K exp(-a Io (z)I) z e ra, 

where 

(2.28) ra ={(: - < U <0}, rb ={(u): 0 < u < oo}, 

and 4 = f-1. The computation 

oo 81 oo h /KeI-(N+?)h Ke #Nh 

(2.29) (f1 W)p kp < K E e-ph= e -h V < he 
p=N+l p=N?l 

follows upon using (2.15) and p(zp) = ph to obtain the first inequality in (2.29). In a 
similar fashion, 

--p KKeaMh 

h ah 
p = -oo 

Using this inequality and (2.29) in (2.25) yields the approximation 

t ~ N 31 
(Mw)'k 

(If ' Sk ? k) + h E f(zp) h (Aw)p + h ifk 

(2.30) p=-M 

K Nh K aM l < -1e -/Nh ? _ aMh + Cle'd/h 

where C1 is defined in the last line of (2.25). 
For convenience, the preceding inner-product approximations are referenced in a 

theorem. This is Theorem 2.11 of [5]. 

THEOREM 2.3. Let Zk and N(-) be defined by (2.3) and (2.5), respectively. Let 
C,(h,d) be given by (2.20 +j), j = 0,1,2. 
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(a) If a is analytic in D and N(aw) < x, then 

(2.31) (a, Sk o - h kWk < Co(h, D)N(aw)e d/e . 

(b) If v andf are analytic in D and N(vfw) < ox, then 

(2.32) (vf, Sk o - h VkfkWk < Co (h, D)N(vfw)e - vd/h. 

(c) If BT in (2.13) is zero, f,iw+' E B(D), (,uw)'f E B(D) and (2.27) holds, then 
(2.30) holds. 

(d) Assume BT2 in (2.11) is zero, and each of fw(4,)2, f [/'w + 4'w'] and fw" are 
in B(D). Further, assume that Ifw4yI and If [k"w + 4'w']/4'I are bounded along F 
by the right-hand side of (2.27). Then 

N [ikp_ _ _f 

(f"sk?)h E [ h 2 kp p ( P+7I h p 
?2 wJ ]hw 

(2.33) p- 

< Kh eNh + heaMh + C2e-'7d/h 

where C2 is defined in the last line of (2.23). 

If the selections 

(2.34) h = (7rdlaM )1/2 

and 

(2.35) N = JaM/I1 

are made for the right-hand sides of (2.30) and (2.33), then the approximations 
are bounded by K1M(-(j-1)/2)e-d(MdaM) (j = 1,2), respectively. Notice that 
the selections h = (7Td//3N)1/2 and M = I[3N/aj lead to the bounds 
KJN(-(J- 1)/2)e -(TdfiN)1/ (j = 1, 2) for the right-hand sides of (2.30) and (2.33). The 
relation between M and N (= [3N/la and JaM//I) shows that the two bounds 
are asymptotically equal. Here, KJ are constants depending on f, ,t, v, w, d, a, and 

A 
The results of Theorem 2.3 are more conveniently recorded with the use of the 

m-vectors (m = M + N + 1) 

S M 0 +(X) f (zM) 

S-M+1 o (X) f (Z-M+1) 

(2.36) Sm(X) = ' fm = 
SO0o (x) f (ZO) 

SN O(X) f (ZN) 

and the m x m matrices 

(2.37) k j = 1,2, 
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where the k, pth entry of Iv is defined by the right-hand side of (2.14) and (2.15), 
respectively. Let Dj(g) be an m x m diagonal matrix whose diagonal entries are 

g(Z-M) , g g(z0),..., g(zN). Let 1 be an m-vector each of whose 
components are 1. In this notation the approximate inner products of Theorem 2.3 
take the form 

(2.38) (a,Sm) = hDm( )1, 

(2.39) (vfI Sm) = hDm (;) fm 

(2.40) (if 4'Sm) = [-ImDm(Pw) -hDm( ('t))fmi 

and 

(2.41) (f Sm) = [)ImDm( :kw) + ImDm( w + 2w') + hDm(P) fm. 

If the assumed approximate solution of the boundary value problem 

(2.42) f "(x) + it(X)f '(X) + v(x)f(x) = a(x), a < x < b, (2.42) 
~~~~~f(a) =f(b) =0, 

is 
N 

(2.43) fm(x)= E fPSPock(X), m = M + N + 1, 
p=-M 

then the discrete Sinc-Galerkin system for the determination of the unknown 
coefficients { fp } -M is given by 

(Im2 Dm ( ?Yw ) + hIml Dm ( ?, + 2w - ttw) 
(2.44) 

+h(2Dm fm = h)2DM (')1. 

The matrix equation (2.44) is obtained upon replacing each of the inner products in 
(2.8) by the approximations in (2.38)-(2.41) and denoting the unknown coefficients 
in (2.42) by f m 

The case thoroughly analyzed in [5] selects w(x) = [0'(x)]-1 in (2.44). To see why 
such a selection is made, consider the problem 

f".5(x) If(x) =1 - logx 0 < x < 
(2.45) X ,20x<1 

f(0) = f(1) = O, 

which has a regular singular point at x = 0. One of the assumptions in the 
derivation of the discrete system (2.44) is that the boundary terms BT (j = 1, 2) 
vanish. If the map p1(z) = log(z/(1 - z)) (see Table 3.1) is used in the evaluation 
of the boundary terms BT, it follows that these terms vanish for (2.45) (p = 0, 
v = -1/x2). Indeed, for any boundary value problem (2.42) on (0, 1) each of the 
boundary terms are zero in the case that (2.42) has regular singular points. The 
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problem (2.45) is considered further in Example 3.2. In general, if the selection 
w(x) = [0'(x)]-1 is made in (2.44), the error in approximating the true solution of 
(2.42) by (2.43) is summarized in the following theorem. 

THEOREM 2.4. Assume that the coefficients ,t, v, and a are analytic in the region D 
of Definition 2.1 and that the problem (2.42) has a unique solution f which is analytic in 
D. Assume also that 

a |f "( z) dz < co, it 
($Z)f(z) dz| < co, 

'3D (Z)f (z) dz , '3D |(j) dz < x 

and for positive a and /3, 

(2.46) If (Z ) I _< 
f 

exp(-at 
I (z) 

l), 
z 

E Fa, 
(2.46) f(z)~K exp(-fi0(z)I), ZET'Fb, 

where Fa and rb are defined in (2.28). If h = (lrd/aM)1/2, N= [aM/alpl and the 
coefficients { fp }I'M in (2.43) are determinedfrom (2.44) with w(z) = [0'(z)] -1, then 

(2.47) M(Z) m(z)|CM3/2e- (TdaM)'12 ZEF. 

If, however, the selections h = (7Td/fiN )1/2 and M = /3N/alI are made, the asymp- 
totically equivalent bound has the form 

(2.48) f(Z) fm(Z) 
- 

C3/2e-(dN)'/2 Z F. 

In the special case of (1.4), that is, 

(2.49) f f"(x) + v(x)f(x) = a(x), a < x < b, 

f(a) =f(b) = 0, 

the discrete Galerkin system (2.44) for the weight w(x) = [0'(x)] takes the form 

(2.50) {Im + hImDM (,,) 2 )?+ h Dm(( i)(L)? (y)}fm h DM( ()2 ) 

While (2.50) is a full nonsymmetric matrix system, the rapid rate of convergence 
guaranteed by Theorem 2.4 often allows one to take a much smaller discrete system 
than would be the case with, say, finite differences or finite elements. As pointed out 
in [5], the dominant matrix Im2 in the system (2.50) is a symmetric negative-definite 
matrix with condition number less than ((M + N)/2 + 1)2. Moreover, the ap- 
proximate solution (2.43) does an accurate job of handling~ singular solutions of 
(2.42). Examples 3.1 through 3.5 in the next section bear out this last remark. 

If instead of the selection of the weight function w(x) = (0'(x))-1, which led to 
(2.50) for the problem (2.49), one selects w(x) = (0'(x))-1/2, then (2.44) takes the 
form 

(2.51) {I + h2Dm( 3/)( Ym = h D 
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where 

(2.52) Ym = D(f)fm 

and 

N 

(2.53) fs (x) = fpSp' ? 0 (x) 
p=-M 

is an assumed approximate solution of (2.49). For the remainder of the paper, if the 
coefficients of fp in (2.43) are determined by (2.50), the method will be called the 
standard sinc method. If the fp in (2.53) are determined by (2.51), the method will 
be referred to as the symmetric sinc method. 

The errors-in the approximate inner products in Theorem 2.3 remain the same for 
the present selection of the weight function if 

(2 .54) | f ( Z)(f( Z ))1/2jl < Ks exp -aB ? (A z ) I z E- ra S f exp{-'S(Aj (z) I}, Z E= Fba' 

for positive constants as and 8s3 and if on the right-hand side of (2.33) each of a 
and /3 is replaced by as and 8s. Moreover, if the selections (2.34) and (2.35) are 
replaced by 

(2.55) h= (Td= a )1/2 

and 

(2.56) N = JasM/8s], 

then the paragraph following (2.35) reads verbatim in the present case if each a and 
B in that paragraph is replaced by as and 8s. 

The analogue of Theorem 2.4 is unchanged in the present case for functions f 
satisfying (2.54). However, the assumption on f in (2.54) is more restrictive than 
is the assumption in (2.46) on f. For example, in the case of the map 01(z) = 

log(z/(1 - z)) (see Table 3.1), the requirement in (2.46) reads (for simplicity, 
assume that a = ,B) 

(2.57) If (x) I _< K(x (1 - x)) , < x < 1 

and (2.54) takes the form 

(2.58) I(x) I < Ks(x(1 - X)) as,+ /2, 0 < x < 1 

The assumption on f to obtain (2.50) required that a > 0. Hence, the assumption in 
(2.54) restricts the application of the approximation (2.51) to functions f satisfying 
(2.57) with a > 1/2. Therefore, the approximation defined by the discrete system 
(2.50) is applicable to a wider class of problems than is the approximation de- 
termined by (2.51) 

The error in the approximation of the true solution f of (2.49) by (2.53), where the 
coefficients { fp I NM are determined by (2.51) and (2.52), can be related to Theorem 
2.4. Make the change of dependent variable 

(2.59) y(x) = (11(X))1/21(X) 
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in (2.49) to arrive at the differential equation 

(2.60) y"(x) + 2r/o( / )y'(x) + (PA.( j )" +=)Y(X = 

Theorem 2.4 applied to the differential equation (2.60) gives the following theorem. 

THEOREM 2.5. Assume that v and a are analytic in D and that (2.49) has a unique 
solution y which is analytic in D. Assume also that 

y8 
I 

f(z) 
I 

1a 
( ) 

a() dz < / 1 y_z__d <__ 

D I f( Z) ItD ( wi ( Z (A( Z)) (Z)) 

'[D d'z) <'o, D - - '(z + 0z() JY(z) dz< o 

and 

(2.61 ) (Z) K( exp { -aI3I(z)I }, z E rb 

If 
N 

(2.62) Ym- =, E (Ap (z) 
p=-M 

is an assumed approximate solution of (2.60) and the {9p} M are determined by 
(2.51), then with h = (rd/alsM)172 and N = UasM/jsl, 

(2.63) Y(X) Ym(X)|? CsM3/2e -ddM)'/2s 

If, however, the selections h = (7Td//3sN)1/2 and M = [B3N/lasj are made, then the 
bound in (2.63) takes the form 

(2.64) y (x) - Ym (x) I< CsN3/2ed)1/2 

If the inner-product approximations in (2.38) through (2.41) (with w(z)= 

(0'(z))-') are applied to the differential equation (2.60), then the linear system (2.51) 
results. Hence, the coefficients 9 in (2.62) are identical with the coefficients yp 
- Ofps in (2.53). That is, substituting (2.52) into (2.53) and using the equality 

yp= show that 
N N A 

(2-65) f.S(x) = E Sp ?, +(X) = Sp ? +(X)- 
p=-M p=-M 

Recalling that Sp ? ((Xk) = Sk'p ((2.16)) and using (2.65), (2.59), and (2.63) lead to 
the estimate 

1f(xk) -fs(xk)I = y(Xk) -Yk 
V('( Xk) 

1 
(2.66) = ) Y(Xk) -Ym(Xk)i 

CSM 3/2 - (?Tda, M)1/2 

|(1(X 1) e 
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Returning to the special case 41(x) = log(x/(1 - x)) and using 

Xk ekh/(ekh + 1) 

from Table 3.1, we see that the inequality in (2.66) reads 

(2.67) f(xk) _f,S(Xk) k 
- 

CsM3/2e-(wdasM)/ 

So while the error in the computed y solution in (2.63) is O(e- (wdas M)/2 ), the error 
in the approximation of the solution f of the original differential equation is,. at the 
nodes, more accurate. To see that this accuracy is asymptotically the same as the 
error on the right-hand side of (2.67), combine the equality a = as + 1/2 ((2.57) 
and (2.58)) with the estimate 

1 _1/ )1 1 (+Ik 1\ 1 
2h+ (~rdcaM)1/~(rcM)2( + -i - k -_ i ) -f kh + 

("asM 
( 

'daM2a M 2] a > 2f 

in the exponent on the right-hand side of (2.67). The analysis of (2.66) in the case of 
(0, xo) boundary value problems for the maps 4i(z) (i = 2, 3) in Table 3.1 proceeds 
in a similar fashion to arrive at the same conclusion: The accuracy of the computed 
solution fs, (determined by (2.51)) is asympotically the same (at the nodes) as the 
computed solution fm (determined by (2.50)). In light of these comments, it appears 
that the selection h = (vrd/aM)1/2 (instead of (2.55)) would lead to errors for the 
symmetric sinc method (the linear system (2.51)) which are effectively the same as 
the error for the method of the standard sinc. This is borne out when one surveys the 
numerical results of the next section. It would seem, based on these numerical 
comparisons, that the connection between the fp in (2.43) (determined by the 
nonsymmetric system (2.50)) and the fp in (2.53) (determined by the symmetric 
system (2.51)) could be made more explicit than the asymptotic equality implied by 
(2.67). To analytically establish a result along these lines would require the relation- 
ship of the system (2.50) to the system (2.51). At present, this writer does not see any 
clear relationship between these two systems. 

In spite of this last uncertainty, it would seem that the standard sinc method 
would always be passed over in favor of the symmetric sinc method. In the case of 
the boundary value problem (2.49), where the true solution satisfies (2.54), this 
would be the case. If, for example, (2.49) is on (0, 1), then the restriction of the 
symmetric sinc method on the solution requires a > 1/2 in (2.57). The method 
defined by the discrete system (2.50) requires only that a > 0. In those examples 
where a E (0,1/2], the standing of the symmetric sinc method is less than clear. 
Example 3.3 pursues this point a little further. 

It should also be pointed out that the standard sinc method applies to the more 
general boundary value problem (2.42), whereas the method of this section is limited 
to the boundary value problem (2.49). If the change of variable f(x)= 
u(x)exp(- 2Jxi(t) dt) is made in order to convert (2.42) to the form 

(2.68) u"(x) + g(x)u(x) = a(x), u(a) = u(b) = 0, 

where g(x) = M2(x)/4 + M'(x)/2 - v(x) and a(x) = a(x)exp(fJXM(t) dt), then it 
may be argued that the method of the present section is applicable to (2.68). While 
this point of view may have potential, it seems that a direct application of the 
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standard sinc method to (2.42) is a preferable approach. The main reason for this 
statement is that the computation of a(xk) in (2.68) would, in general, require the 
numerical approximation of m (= M + N + 1) indefinite integrals in order to 
define the right-hand side of (2.51). 

3. Numerical Implementation. The five examples included in this section were 
selected in order to illustrate the comparative performance of the standard sinc 
(2.50) and symmetric sinc (2.51) methods on a set of boundary value problems with 
various singular behaviors. The formulas required for the assembly of the discrete 
systems (2.50) and (2.51) are summarized in Table 3.1. The domains D and maps 0 
of Definition 2.1 for the special cases when r is (0, 1) and (0, om) are illustrated in 
Figure 3.1. In each of the five examples, the discrete sinc systems defined by (2.50) 
and (2.51) are used to compute the coefficients {fp}YM in (2.43) and { f }N in 
(2.53), respectively. 

TABLE 3.1 
Entries neededfor the discrete system (2.50): 

I!,2 + h2D | l-- + ^-AD(ro )f S D - f 
{ Iil + hmD,( (4y)3/2 ( ) (0,)2 ) /)m D(kT;3/2) 

and the system (2.51): 

II2 + hIlD ) }m ) h2) + v 02f _ h2Dm a 1 

(?,' <( ,) +,3/2 (PO) 1>,z 
7 1 e^kh 1 log I 1 -2Z 2(z-1) -- z(1- ekh ?1 

1 k 2 log 1 0 -- z ekh 

3 log(sinh Z) sech2 z 2 Z 3 -2cos tanh z log[ekh e e2kh + 1 

For the first three examples (all on (0,1)) the condition (2.46) on the solution f of 

(2.46) is equivalent to 

(3.1) (x) (1 x) /2 < x < 1 

All three examples are approximated using the selections (2.34) and (2.35), i.e., 

(3.2) h = (rd/aM)112, N = [aM/I], 

to assemble the discrete systems (2.50) and (2.51). The first and third columns in 
each of these examples (headed Afk and AJfk under h = (,rd/aM)1/2) is the 
absolute error at the nodes Xk = ekh/(ekh + 1), -M < k < N. The second column 
(headed IIAf(a)iI) is the error between the true solution of (2.42) and the approxi- 
mate (2.43) on an equispaced grid (mesh size = .02). The error between the true 
solution and the approximate defined by (2.53) is effectively the same as the errors 
listed under JjAf(a)jj and has therefore not been listed. For comparison purposes, 
the selection h = ('7zd/asM)1"2 (a5 = a - 1/2) is used in Examples 3.1 and 3.2. 
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dX / ?3(z) = log (sinhz) 

FIGURE 3.1 

The domains D and maps 4 of Definition 2.1 

The fifth and fourth columns in these two examples (headed Afks(as) and I IAfs(as)II 
under h = (7Td/a sM)1/2) are the error at the nodes ekh/(ekh + 1), -M < k < N, 
and the uniform error between the true solution of (2.42) and (2.53) on an 
equispaced grid (mesh size = .02), respectively. The selection e = (7Td/asM)1/2 is 
not available for Example 3.3. This example is, however, approximated using both 
the discrete systems (2.50) and (2.51). The numerical results support the discussion 
following (2.67): The error in the approximation of the true solution f by fms when 
h = (7Td/aM)1/2 is asymptotically the same as the error in approximating f by Im 
in (2.43). 

The choice h = (vTd/lasM)1/2 yields a somewhat unexpected result. A survey of 
the tables in Examples 3.1 and 3.2 shows not only that the error is within the 
predicted asymptotic rate (the right-hand side of (2.63)), but that it is somewhat 
better. Whereas the asymptotic equality in (2.67) indicates that the accuracy for the 
selection h = (s7d/asM)112 should be about the same as that for the choice 
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h = (vd/aM )1/2, there is no reason to expect any increase in accuracy. Based on 
these numerical computations, one might conjecture that the choice h = (7rdIasM)112 
always leads to this increased accuracy. For problems on (0, 1), this may well be the 
case. However, the numerical results of Examples 3.4 and 3.5 indicate that this 
unexpected accuracy may be map-dependent. Finally, it should be pointed out that 
in all cases where the selection h = (7Td/lasM)1/2 yielded a gain in accuracy 
(compared to the choice h = (vTd/aM)1/2), the same problem was computed with 
h = (7Td/aC M)1/2 by the standard sinc method. These results show no increase in 
accuracy. Based on this discussion the author recommends the selection h = 

(7Td/lasM)1/2 in all cases when both a and as are available (a > 1/2). If, as in 
Example 3.3, only the selection a is available, the choices provided by (3.2) should 
be used to define (2.51) for the computation of the approximation defined by (2.53). 
In all examples one may take d = 7T/2. All examples have zero boundary data and 
the notation .xxx - y is .xxx x 10-'. 

Example 3.1. f "(x) - 3f(x)/4x2 = -3 /x. This example was selected since f(x) 
-x3/2(1 - x), so that a= 3 = -1 in (3.1). In this case, h = 3/ and 
N = I[3M]. Since as = a - = 1, the last two columns of the following table are 
computed with h = 7T/ 2M. 

h = (7rd/aM)1/2 h = (7Td/lasM)1/2 
N M \Afk IIAf(a)II Afk IlAfS(as)ll Af\k(a) 

6 4 .527 - 2 .638 - 2 .516 - 2 .567 - 2 .786 - 3 
12 8 .964- 3 .940 - 3 .947 - 3 .631 - 3 .875 - 4 
15 10 .926 - 4 .930 - 4 .925 - 4 .252 - 4 .201 - 5 
24 16 .156 - 4 .157 - 4 .127 - 4 .198 - 5 .119 - 6 

Example 3.2. f"(x) - f(x)/x2 = (1 - log(x))/x. Here the solution f(x) = 

x log x has a logarithmic singularity at x = 0. The inequality (3.1) is satisfied if a 
and /3 are in (0, 1). The results below are listed for a = /3 = 1 and h = r/ 2M. 
The selection as = I gives h = (rd/a M)1/2 = l/ Vr7. 

h = (rlad/MM)1/2 h = (rdlasM)1/2 
M = N Afk IIAf(a)J fS IIAfs(fs)ll Atfk(as) 

4 .149 - 1 .912 - 2 .148 - 1 .380 - 2 .192 - 2 
8 .451 - 2 .982 - 3 .454 - 2 .364 - 3 .316 - 3 

16 .607 - 3 .837 - 4 .609 - 3 .105 - 4 .161 - 4 
24 .114 - 3 .221 - 4 .114 - 3 .560 - 5 .138 - 5 

Example 3.3. f "(x) - (x(1 - x))'-f(x) = a(x). Here a(x) is selected so that 
f(x) = (x(l - x))112. Hence, a = /3 = 2 in (3.1), h = r/ l/N and M = N in (3.2). 
In this case, a = 2 in (2.57), so that a5 = 0 in (2.58). This case is not covered by 
Theorem 2.4. The approximate solution (2.53) was computed using (2.51) with the 
parameters a = /3 = 2 and h = (Td/aM)1/2. 
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h = (rd/laM)112 
M ^ ~~fk llAfA)ll Afk 

4 .245 - 1 .226 - 1 .226 - 1 
8 .747 - 2 .671 - 2 .741 - 2 

16 .134 - 2 .123 - 2 .131 - 2 
24 .346 - 3 .325 - 3 .348 - 3 

For the next two examples (both on (0, oc)), the condition (2.46) on the solution f 
of (2.49) is equivalent to 

(3.3) If (x) I S K{ x (0,1 
x 1 

in the case of 42(x) = log x, and 

(3.4) f (x) I 
x'9 x E (0,log(1 + 2)], 

in the case of 3(X) = log(sinh(x)). The selection N = [aM/I] in (2.35) again 
yields the asymptotic convergence rate exp(-(TrdaM )1/2). However, in the case of 
the map 02, a selection of N leading to a smaller discrete system (2.50) may be made 
in the case of boundary value problems (2.49) whose solutions have exponential 
decrease at infinity. To see how this alternative selection is made, assume that the 
true solution of (2.49) is O(e - x) (y > 0, x -x oc). An inspection of the method 
leading to the truncation error in (2.33) shows that, at the upper limit, 

(3.5) 12 
+ 1 (P) f p N+ L..dlkp kp l, 2llp Tf(x) p=N ?1l G ')I (~? p=N+l 

where both (2.14) and (2.15) were used to obtain the inequality in (3.5). The first 
term to the right-hand side of the inequality in (2.33) is obtained upon replacing 
lf(xp)I in (3.5) by exp(-f3ph) (from (3.3)) and summing the resulting series. In the 
present setting, f(xp) exp(-ye Ph), SO that the truncation error is much smaller 
than is indicated by the general development leading to (2.33). Regarding the 
truncation error in (3.5) as exp(-yeNh), and equating this to exp(-aMh), leads to the 
selection 

(3.6) N log (Mh) + I 

This procedure, h = (7wd/aM)1/2 and N selected as in (3.6), is elaborated on in 
Example 3.4. 

As is the case for the finite-interval example, there is also the choice h= 

(1d/lasM)112. In contrast, however, to the finite-interval examples, the error in the 

computed solution f,m using h = (7rd/asM)1/2 displays no increased accuracy as 
compared to the error in the computed solution fs, when h = (,Td/aM)1/2 and the 
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map k2 is used. Example 3.5 indicates that the unexpected increase in accuracy seen 
in the finite-interval examples may persist for the map p3. In the tables that follow, 
the columns headed AfJ and At+S denote the error at the nodes Xk= ekh 

(-M < k < N) between the true solution of (2.49) and its approximate Im (de- 
termined by (2.50)) and f,m (determined by (2.51)). The columns headed Afo3 and 
A f S denote this error for the map +3(X). 

Example 3.4. f "(x) - f(x) = -2e-x. The solution f(x) = xex satisfies (3.3) 
and (3.4) for a = /3 = 1. Hence, if we use (3.2), the selections h = (7rd/aM)1/2 = 

r/ 2 M and M = N are applicable for either of the maps O2 or 3. However, due 
to the exponential decrease of the solution, N is selected for the map k2 by (3.6) 
(y = 1). Note the increased accuracy for the choice h = (rd/a,M)1/2 in the case of 
the map 43(X). 

h = (7rd/laM)1/2 h = (rdla,M)112 
M N h2 h 2 f 2(s) 

4 2 .631 - 2 .551 - 2 .283 - 1 
8 4 .124 - 2 .949 - 3 .534 - 2 

16 6 .844 - 4 .857 - 4 .580 - 3 
24 7 .169 - 4 .127 - 4 .174 - 3 

h = (rd/laM)1/2 h =(7ddas )1/2 

M =N h Af3 +3(as) 

4 .638 - 2 .564 - 2 .212 - 2 
8 .195 - 2 .188 - 2 .363 - 3 

16 .271 - 3 .269 - 3 .198 - 4 
24 .591 - 4 .516 - 4 .605 - 5 

Example 3.5. f "(x) - 2xf(x)/(x2 + 1)2 = -6x/(X2 + 1)3. The solution f(x) = 

x/(x2 + 1) satisfies the assumption (3.3), but not (3.4). Hence, the rate of conver- 
gence given by Theorem 2.4 is obtained using the map +2(Z) = log z with a = A = 1, 
h = l/ 2M and M = N. The map 03 yields a convergent method for this example, 
but the rate of convergence is very slow. Problems where the map 43 is preferable to 
the map 02 are discussed in [2], [3] and [6, p. 210]. Note, just as in the last example, 
the error for the selection h = (rd/asM)1/2, while within the asymptotic rate given 
by exp(-(rdasM)1/2), is not as good as the error using the selection h= 

(7rd/aM )1/2 

h = (rd/laM )1/2 h = (77d/asM )1/2 

M ~~A42 Af4'2 'Af2 (as) 

4 .126- 1 .121 - 1 .586- 1 
8 .105 - 2 .159 - 2 .130 - 1 

16 .118 - 3 .107 - 3 .123 - 2 
24 .229 - 4 .452 - 4 .234 - 3 
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